Expert Talk: "AI wird das Kaufverhalten massiv beeinflussen" Video-Podcast ansehen
Nie hat sich die Welt schneller verändert als heute. Für Unternehmen eine gewaltige Herausforderung, denn Disruption kennt vor allem zwei Spielertypen: Gewinner und Verlierer. Wie Sie sich auf der richtigen Seite wiederfinden, erklärt FactFinder-Chefin Kristie Collins im iBusiness Expert Talk. Video-Podcast ansehen
Dossier Temu-Strategie Zum Dossier 'Temu-Strategie'
Was sind die Erfolgsrezepte des chinesischen Billig-Marktplatzes? Und wie kann man seiner Strategie begegnen? Das iBusiness-Dossier stellt exklusive Zahlen und Analysen zu TEMU zusammen.
Zum Dossier 'Temu-Strategie'
Künstliche Intelligenz

Diese drei Trends werden das KI-Jahr 2021 prägen

08.01.2021 Transfer Learning, Cross Lingual Word Embeddings und grüne KI: Was hinter drei zentralen KI-Trends für das kommende Jahr steckt.

 (Bild: Geralt Pixabay)
Bild: Geralt Pixabay
Künstliche Intelligenz ist und bleibt ein Top-Thema. Auch im Jahr 2021 wird sie der IT-Welt wieder ihren Stempel aufdrücken. IntraFind zur Homepage dieses Unternehmens Relation Browser , Spezialist für Enterprise Search und KI, beleuchtet drei Trends für textfokussierte KI und Natural Language Processing, die dabei eine wichtige Rolle spielen.

1. Transfer Learning

Nach 2020 bleibt Transfer Learning auch in diesem Jahr ein zentraler KI-Trend. Transfer Learning ist eine spezielle Methode des maschinellen Lernens und ermöglicht, neuronale Netze, die bereits für einen bestimmten Zweck vortrainiert sind, als Ausgangspunkt für eine andere Aufgabe zu verwenden. Das bereits Gelernte eines trainierten Netzes wird dadurch für ein neues Projekt nutzbar gemacht. Das Trainieren eines neuronalen Netzes ist durch diese Methode deutlich weniger rechenintensiv und zeitaufwändig, die Menge der erforderlichen Trainingsdaten sinkt erheblich. Transfer Learning wird die Demokratisierung von KI weiter voranbringen und ihren flächendeckenden Einsatz in der Unternehmenswelt weiter beschleunigen. Bislang funktionierte KI in Unternehmen nämlich nur dann besonders gut, wenn sie viele Daten besitzen - was in der Praxis selten der Fall ist - und maßgeschneiderte Modelle nutzen.

2. Cross Lingual Word Embeddings

Zahlreiche Anwendungen des Natural Language Processing (NLP) stehen nur für die wichtigsten europäischen Sprachen zur Verfügung - häufig sogar ausschließlich für Englisch. Ein wichtiger Grund dafür ist, dass die Ausdehnung von NLP-Modellen auf neue Sprachen üblicherweise die zeitaufwändige Annotation komplett neuer Datensätze erfordert und sehr rechenintensiv ist. Für weniger verbreitete Sprachen stehen aber auch häufig gar nicht genügend Trainingsdaten zur Verfügung. Abhilfe können hier multilinguale Modelle mit so genannten Cross Lingual Word Embeddings (CLWEs) schaffen. Diese CLWEs nutzen die Tatsache, dass viele Sprachen semantische Ähnlichkeiten aufweisen. Sie erfassen diese Ähnlichkeiten und können Wörter in mehreren Sprachen in einem gemeinsamen Vektorraum darstellen.

3. Grüne KI

Künstliche Intelligenz durchdringt immer mehr Bereiche des Lebens und der Wirtschaft. Dementsprechend stark wächst auch der ökologische Fußabdruck, den sie beim Training von Algorithmen und ihrem Einsatz hinterlässt. Vor dem Hintergrund des steigenden Bewusstseins für Umweltschutz und Klimawandel gewinnt deshalb grüne KI immer mehr an Bedeutung. So wird beispielsweise verstärkt an Algorithmen geforscht, die weniger Energie, weniger Speicher und weniger Kommunikationsbandbreite benötigen. Auch die Energieversorgung und Effizienz der für KI genutzten Rechenzentren kommt immer öfter auf den Prüfstand. Ein weiterer wichtiger Aspekt von grüner KI ist der Einsatz von Algorithmen, um Energieerzeugung, den Betrieb der Netzinfrastruktur und die Energienutzung möglichst effizient zu gestalten.
Neuer Kommentar  Kommentare:
Schreiben Sie Ihre Meinung, Erfahrungen, Anregungen mit oder zu diesem Thema. Ihr Beitrag erscheint an dieser Stelle.
alle Veranstaltungen Webcasts zu diesem Thema:
Dienstleister-Verzeichnis Agenturen/Dienstleister zu diesem Thema: